
l e a nl e a n
software development

Mary & Tom Poppendieck

Lean Software Development

Workshop

Principles of

Lean Software Development

1. Eliminate Waste

2. Embed Quality

3. Learn First Quality Low Cost

l e a n

3. Learn First

4. Deliver Fast

5. Improve Forever

6. Respect People

7. Think System

July 082 Copyright©2006 Poppendieck.LLC

Speed

Quality Low Cost

What is Waste?

Waste is…Waste is…
Anything Anything that depletes resources that depletes resources of timeof time, effort, , effort,
space, or money space, or money without without adding customer adding customer value.value.

Value is…Value is…

l e a nJuly 083 Copyright©2006 Poppendieck.LLC

Value is…Value is…
Seen through the eyes of those who pay for, use, Seen through the eyes of those who pay for, use,
and derive value from the systems we create.and derive value from the systems we create.

A System is…A System is…
A complete and useful product, along with whatever A complete and useful product, along with whatever
is needed to create and distribute the product.is needed to create and distribute the product.

Eliminate Waste

1. Extra Features

2. Partially Done Work

The 7 Wastes of The 7 Wastes of
Software DevelopmentSoftware Development

The Seven Wastes of Manufacturing The Seven Wastes of Manufacturing
-- Taiichi OhnoTaiichi Ohno

1. Overproduction

2. Work In Process

l e a n

3. Relearning

4. Handoffs

5. Task Switching

6. Delays

7. Defects

July 084 Copyright©2008 Poppendieck.LLC

3. Overprocessing

4. Transportation

5. Motion

6. Waiting

7. Defects

If It’s Not Value, It’s Waste

Put on Customer Glasses Extra Features

l e a nJuly 085 Copyright©2008 Poppendieck.LLC

C
o

s
t

Time

The 80-20 Rule

Features and Functions Used in a Typical System

Sometimes
16%

Rarely
19%

Often or AlwaysOften or Always
Used: 20%Used: 20%

l e a nJuly 086 Copyright©2008 Poppendieck.LLC

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Always

7%

Often

13%

Never
45%

Rarely or Never
Used: 64%

If It’s Not Value, It’s Waste

Put on Customer Glasses Partially Done Work

l e a nJuly 087 Copyright©2008 Poppendieck.LLC

Set-up Time

ManufacturingManufacturing

Common Knowledge:
� Die changed have a huge overhead

� Don’t change dies very often

Taiichi Ohno:
� Economics requires frequent die change

l e a n

� Economics requires frequent die change

� One Digit Exchange of Die

Software DevelopmentSoftware Development

Common Knowledge:
� Releases have a huge overhead

� Don’t release very often

Lean:
� Economics requires many frequent releases

� One Digit Releases

March, 20038 Copyrignt©2003 Poppendieck.LLC

If It’s Not Value, It’s Waste

Put on Customer Glasses Relearning

l e a nJuly 089 Copyright©2006 Poppendieck.LLC

If It’s Not Value, It’s Waste

Put on Customer Glasses Handoffs

l e a nJuly 0810 Copyright©2006 Poppendieck.LLC

A hand-off occurs whenever we separate:*

� Responsibility

� Knowledge

� Action

� Feedback

*Allen Ward “Lean
Product and Process

Development”
− What to do

− How to do it

− Actually doing it

− Learning from results

Cross-functional Teams

Early mutual

release of

preliminary

information

permits

effective

What Needs To Be Done

How To Build It

What Needs To Be Done

How To Build It

How Support It

One-shot unilateral transfer

of complete solutionWhat Needs To Be Done

How To Build It

How Support It

l e a nJuly 08 Copyright©2007 Poppendieck.LLC

effective

tradeoffs How To Support It

Overall

System

Software

Development

QA and

Integration

Operations

and Support

If It’s Not Value, It’s Waste

Put on Customer Glasses

Task Switching

l e a nJuly 0812 Copyright©2006 Poppendieck.LLC

Task A

Task B

Task C

Month 1 Month 2 Month 3 Month 4

If It’s Not Value, It’s Waste

Put on Customer Glasses Delays

l e a nJuly 0813 Copyright©2008 Poppendieck.LLC

Empire State Building

September 22, 1929

Demolition started

January 22, 1930

Excavation started

March 17, 1930

Construction started

One Year Earlier:

l e a n

Construction started

November 13, 1930

Exterior completed

May 1, 1931

Building opened

Exactly on time

18% under budget

July 0814 Copyright©2008 Poppendieck.LLC

How did they do it? The key: Focus on FLOW.

Steel

Schedule

We thought of the work as if it

were a band marching through

the building and out the top.

l e a nJuly 0815 Copyright©2007 Poppendieck.LLC

From: “Building the Empire State”
Builders Notebook: Edited by Carol Willis

Pull Scheduling

Small Requests

l e a nJuly 0816 Copyright©2007 Poppendieck.LLC

Output CapacityInput Flow

Never

Pull Scheduling:

Larger Systems

l e a nJuly 08

17

Copyright©2008 Poppendieck.LLC

Start
Product

Concept

Approved

3 Months
Knowledge Review:

Customer Interest

Technical Approach

6 Months
Knowledge Review:

Proof of Concept

Alpha Release Decisions

12 Month Timebox
Knowledge Review:

Beta Release

1st Release Decisions

15 Months
First

Production

Release

9 Month Timebox
Knowledge Review:

Alpha Release

Beta Release Decisions

If It’s Not Value, It’s Waste

Put on Customer Glasses Defects

l e a nJuly 0818 Copyright©2008 Poppendieck.LLC

Don’t Tolerate Defects

Change The SystemChange The System

There are Two Kinds of InspectionThere are Two Kinds of Inspection
1. Inspection to Find Defects – WASTE

2. Inspection to Prevent Defects – Essential

l e a nJuly 0819 Copyright © 2006 Poppendieck.llc

Change The SystemChange The System

Mistake-Proof Every Step

� Detect defects the moment they occur

Don’t track defects on a list

� Find them and fix them

Test FIRST

Categories of Testing

FunctionalFunctional
TestsTests

Business Intent

UsabilityUsability
Testing Testing

ExploratoryExploratory

Test Business Design

T
es

t
to

 S
p

ec
if

ic
a
ti

o
n

T
es

t
to

 F
a
il

u
re

Automated:

Every Day

Manual:

As Early as

Practical

l e a nJuly 0820 Copyright©2008 Poppendieck.LLC

Business Intent
(Design of the Product)

ExploratoryExploratory
TestingTesting

Unit Unit
TestsTests

Developer Intent
(Design of the Code)

PropertyProperty
TestingTesting

Response,

Security,

Scaling,

Production Resilience

F
ro

m
 B

ri
a
n
 M

a
ri
c
k

Test Technical Design

T
es

t
to

 S
p

ec
if

ic
a
ti

o
n

T
es

t
to

 F
a
il

u
re

Automated:

Every Build

Tool-Based:

As Early as

Possible

Building Block Disciplines

Mistake-Proofing

� Design/Code Reviews

� Configuration/Version Management

� One Click Build (Private & Public)

Simplicity

�Architecture

�Development

� Naming

� Coding

l e a n

� Continuous Integration

� Automated Unit Tests

� Automated Functional Tests

� Production Test Harnesses

�� STOPSTOP if the tests don’t pass

� Automated Release Packages

� Frequent Releases

� Coding

� Logging

� Security

� User Interaction

�Tools

� Code Checkers

� IDE’s

�Refactoring
� Continuous Improvement

of the code base.

July 0821 Copyright©2007 Poppendieck.LLC

Seeing Waste

Value Stream Map

A diagnostic tool to find the biggest

waste (opportunity for improvement)

in a development process. Problem Solution

l e a n

Development Process Capability:
�The reliable, repeatable cycle time from

customer need until that need is satisfied.

Begins and ends with the customerBegins and ends with the customer

� Product Concept Product Starts Delivering Value

� Feature Request Feature in Production

� Urgent Need Maintenance Patch Deployed

July 0822 Copyright©2008 Poppendieck.LLC

Cycle Time

ct

Cycle Time

Cycle Time

Value Stream Examples

Example 1

l e a nJuly 0823 Copyright©2008 Poppendieck.LLC

Example 2

Value Stream Examples

23 - 33%

Efficiency

123 hours Value

500-660 Hours

Total Cycle Time
Require

-ments
Develop Test

Require-

ments
Develop TestExample 3

l e a n
value

1 week 1 day

1 hour

1 week ½

week

2-3 months to

merge

waste

2 weeks working together
How much is

Value? 1 hour1 hour

Require-

ments
Develop Test

Require-

ments
Develop Test

QA

Marketing

requests New

Feature

Approval
Require-

ments
Develop Test Deploy

July 0824 Copyright©2008 Poppendieck.LLC

Value Stream Examples

Example 4

l e a nJuly 0825 Copyright©2006 Poppendieck.LLC

Question: What is really value added? What is the % efficiency?

Case Study:

Critical Defects

Level 1

Customer

Support

Level 2

Customer

Support

Problem

Level 3

Customer

Support

Write

Problem

Report

Quick

Assessment

Current Value Stream Map

48 hrs? 24 hrs

30% - 2 days

10 min 12 hrs 1 hr

½ day

l e a nJuly 0826 Copyright©2008 Poppendieck.LLC

Second Level

Analysis

Develop and

Test Solution
Deploy

30% 2 days

½ day

4 hrs 1 day 2 days

Development

Team 1 X – ½ dayWhat if ?

6½ days

3½ days
10 days

Case Study:

Critical Defects

Questions:

Who will staff the phones?

�Developers – in rotation

How many will we need?

�Experiment – find out

Two Rules:

1. Immediately after a release,
responsible team takes calls.

2. Learning from each call MUST
be recorded in knowledge base

Future Value Stream Map

l e a n

Results:

� 65% faster response time

� 40% increase in available development time (for 800 developers)!

� Before: 60% of development time spent on critical defects

� After: 20% of development time spent on critical defects

�Experiment – find out be recorded in knowledge base
which is available to customers.

July 0827 Copyright©2008 Poppendieck.LLC

Problem
Second Level

Analysis

Develop and

Test Solution
Deploy

4 hrs 1 day 2 days

Development

Team 1 X – ½ day

Why not?

Exercise: Current Value

Stream Map

Add up time of each step plus time

between steps = Total Cycle Time

Add up Value Added Time in each step

Calculate Process Cycle Efficiency*

Select a process for creating a
Value Stream Map. Decide
when the clock starts (eg.
customer has a need) and

Value Added Time

l e a n

customer has a need) and
when it stops (need is filled).

July 0828 Copyright©2008 Poppendieck.LLC

Current Value Stream Map

List / diagram the key steps

List the average time of each step

�Does the step add value full time?

�Is the step ever repeated?

List the average time between steps

Report Back.

Total Cycle Time

* George & Wilson, Conquering Complexity in Your Business

Principles of

Lean Software Development

1. Eliminate Waste

2. Embed Quality

3. Learn First Quality Low Cost

l e a n

3. Learn First

4. Deliver Fast

5. Improve Forever

6. Respect People

7. Think System

July 0829 Copyright©2006 Poppendieck.LLC

Speed

Quality Low Cost

Queuing Theory

Little’s Law

l e a nJuly 0830 Copyright©2008 Poppendieck.LLC

Time Through the System =

Number of Things in Process

Average Completion Rate

The Utilization Paradox

Cycle Time as a Function of Utilization and Batch Size*

30

35

40

45

C
y
c
le

 T
im

e
 (

h
o

u
rs

)

Small Batches

Medium Batches

Large Batches

l e a n
ThrashingThrashing

July 0831 Copyright©2007 Poppendieck.LLC

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
y
c
le

 T
im

e
 (

h
o

u
rs

)

Small Batches

*This assumes batch size is proportional to variability.

High PerformanceHigh Performance

Reducing Cycle Time

Level the Workload

� Even out the Arrival of Work

� Establish a Regular Cadence

l e a nJuly 0832 Copyright©2008 Poppendieck.LLC

Queuing Theory 101

Establish a Regular Cadence

Daily

Iteration

Execution

Iteration

Planning

l e a nJuly 0833 Copyright©2008 Poppendieck.LLC
features

desirable

list of

Prioritized

Road Map:

Stories

& Tests

Every 2-4

Weeks
Deployment

- Ready

Software

One Iteration

Ahead

Feedback

Reducing Cycle Time

Level the Workload

� Even out the Arrival of Work

� Establish a Regular Cadence

Limit Work To Capacity

l e a n

Limit Work To Capacity

� Timebox, Don’t Scopebox

� Pull – Don’t Push

July 0834 Copyright©2008 Poppendieck.LLC

Queuing Theory 101

Timebox, Don’t Scopebox

l e a n

Ask NOT:Ask NOT: How long will this take?How long will this take?

Ask instead:Ask instead: What can be done by this date?What can be done by this date?

July 0835 Copyright©2007 Poppendieck.LLC

Reducing Cycle Time

Level the Workload

� Even out the Arrival of Work

� Establish a Regular Cadence

Limit Work To Capacity

l e a n

Limit Work To Capacity

� Timebox, Don’t Scopebox

� Pull – Don’t Push

Optimize Throughput – Not Utilization

� Minimize the Size of Things In Process

� Minimize the Number of Things In Process

July 0836 Copyright©2008 Poppendieck.LLC

Queuing Theory 101

Principles of

Lean Software Development

1. Eliminate Waste

2. Embed Quality

3. Learn First Quality Low Cost

l e a n

3. Learn First

4. Deliver Fast

5. Improve Forever

6. Respect People

7. Think System

July 0837 Copyright©2006 Poppendieck.LLC

Speed

Quality Low Cost

Taiichi Ohno

Standard Work

When creating Standard Work, it will be difficult to establish

a standard if you are trying to achieve ‘the best way.’ This is a big

mistake. Document exactly what you are doing now. If you make it

better than it is now, it is kaizen. If not, and you establish the best

possible way, the motivation for kaizen will be gone.

l e a n

possible way, the motivation for kaizen will be gone.

That is why one way of motivating people to do kaizen is to

create a poor standard. But don’t make it too bad. Without some

standard, you can’t say ‘We made it better’ because there is nothing

to compare it to, so you must create a standard for comparison. Take

that standard, and if the work is not easy to perform, give many

suggestions and do kaizen.

From Workplace Management, by Taiichi Ohno, originally published in 1982,

from translation by Jon Miller, Gemba Press, 2007.

July 0838 Copyright©2007 Poppendieck.LLC

Relentless Improvement

1.Solve One Problem at a Time

2.Use Data-Based Problem Analysis
� Pareto Analysis

� Find the most important problem

� Root Cause Analysis
� Cause & Effect Diagram

Kai

l e a n

� Cause & Effect Diagram

� Five Why’s

3.Try Many Quick Experiments

4.Measure & Change Based on Results

5.Do it Again

July 0839 Copyright©2008 Poppendieck.LLC

Change

Zen

Good

l e a nl e a n
software development

Mary & Tom Poppendieck

Thank You!

More Information: www.poppendieck.com

